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Abstract. The reflection properties of one-dimensional generalized Cantor-like multilayer (GCLM) are
investigated numerically in the visible range. Strong correlation between the stack geometry and the
properties of the optical reflection spectra is found, namely spectral scalability and sequential splitting.
The construction of multilayer systems according to the definite Cantor distribution brings improvements
to the reflection properties. In particular, the widening of the band gap and the thin peak appearance in
the reflection spectra whose number increases with the division number in the (GCLM). Optical properties
of (GCLM) inserted between two periodic stacks are numerically investigated. We chose SiO2(L) and TiO2

(H) as two elementary layers. The study configuration is H(LH)5[GCLM]P H(LH)5 which forms an effective
interferential filter in the visible spectral range. We show that the number of resonator peaks is dependent
on the repetition of the number P of the (GCLM). The best performances are obtained in particular for
the symmetrical configurations of the (GCLM) and especially for P an odd number.

PACS. 61.44.Br Quasicrystals – 42.70.Qs Photonic bandgap materials – 42.79.Ci Filters, zone plates,
and polarizers

1 Introduction

During the last decade, one dimensional dielectric struc-
tures, referred to as photonic crystals, have been exten-
sively studied both theoretically and experimentally [1–7].
Photonic band gap (PBG) crystals are usually composed
of altering layers having a high refractive index say nH ,
and a low refractive index say nL, in an arrangement that
gives rise to a series of forbidden wavelength gaps. That is,
light is almost completely reflected by the crystal, while a
series of wavelength pass bands form [8].

It has been shown that for a suitable choice of high
and low refractive indices nH , and nL, periodic struc-
tures strongly reflect at frequencies and angles of inci-
dence corresponding to photonic band gap [9]. On the
other hand, PBGs have been extended to photonic quasi-
periodic structures [10–12] such as Cantor and Fibonacci
multilayer.

This work deals with the use of quasiperiodic struc-
tures for novel optical components. We first report a nu-
merical simulation of the reflection properties of multilayer
films, built according to the asymmetrical Cantor mode
proposed here. The construction of multilayer systems ac-
cording to the Cantor distribution brings improvements in
the reflection properties. Indeed, this model will allow the
construction of fractal multilayer structures with the aim
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of getting more interesting optical properties by compar-
ison with the results obtained with classic periodic PBG
structures. Secondly, we intend to study an interferential
filter based on the generalized Cantor-like multilayer. The
generalized Cantor-like multilayer represents an interest
polychromatic filter when is sandwiched between two pe-
riodic stacks [13].

2 Generalized Cantor-like multilayer

To built multilayer structures according to this model,
we start from an initiator of length l and of high re-
fractive index nH , we subdivide it into m unities of
equal length (l/m), the first layer of length a(l/m) is
a layer of high refractive index nH , the second layer of
length b(l/m) is a layer of low refractive index nL and
the last layer of length [l − (a + b)l/m] is of high re-
fractive index nH . Where a and b are integer, m the ho-
mothetic ratio. If m = 2 the interferential mirror is a
periodic multilayer. When m > 2, we have to consider
different cases according to the algebraic properties of the
homothetic ratio. This is the first step (N = 1) of the
model. In the second iteration (N = 2), we subdivide
into m units of equal length a(l/m2), the first layer and
take a segment of length a2(l/m2) as a layer of high re-
fractive index nH , the second layer of length ba(l/m2) is
a layer of low refractive index nL and the last layer of



432 The European Physical Journal B

Fig. 1. The model of the generalized Cantor set construction.

length [al/m − (a + b)(a2l/m2)] is of high refractive in-
dex nH . We repeat this procedure for the [l−(a+b)(l/m)]
high refractive index layer. We subdivide it into m uni-
ties of equal length ([l − (a + b)l/m])/m, the first layer of
length a([l− (a+ b)(l/m)])/m) is a layer of high refractive
index nH , the second layer of length b([l−(a+b)l/m])/m)
is a layer of low refractive index nL and the last layer of
length: {l − (a + b)(l/m)− (a + b)([l − (a + b)(l/m)])/m}
is of high refractive index nH as shown in Figure 1, and
continuing this procedure ad infinitum. We note that a, b
and m obey to: a + b < m.

Also notice that, within fixing m = 3 and (a, b) =
(1, 1), we find the classical Cantor set [7,14], and we obtain
the symmetrical structures HLH for the first level N =
1, and HLH3LHLH for the second level N = 2 etc. Our
choice for the number in the Cantor prefractal level N = 3,
is restricted because the total optical path increases for the
Cantor-like multilayer of level N .

3 Interferential polychromatic filters

We now study the transmission properties of one dimen-
sional photonic band gap structures which are built ac-
cording to the pattern of generalized Cantor-like mul-
tilayer (GCLM). This structure inserted between two
periodic stacks shows interesting transmission properties
leading to novel optical applications such as polychromatic

Fig. 2. The model of the study configuration
H(LH)5[GCLM]P H(LH)5.

filters. The main idea [13] consists in the insertions of the
(GCLM) between two identical periodic multilayer struc-
tures (PMS) as shown in Figure 2.

The configuration is the following: (PMS)J [GCLM)]P

×(PMSJ) where P and J are respectively, the repetition
numbers of the (GCLM). and the (PMS).

The interferential filters are composed of multiple thin
layers and function on the same principle that an inter-
ferometer of Fabry-Pérot. The incident light undergoes
multiple reflections between the different surfaces defin-
ing resonant cavities. Interferences that occur between the
different emerging bundles create a maximum in transmis-
sion when the optic path difference is an integer number of
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Fig. 3. The reflection properties for (a, b) = (1, 1) and m an integer equal to (a): 3, (b): 4, (c): 5 and (d): 6.

the wavelength. For the other wavelengths, interferences
are destructive and the transmission is very weak.

A classical Fabry-Pérot uses a space of air between
reflective surfaces. An interferential filter uses a thin di-
electric material layer. Reflective layers are composed of
a blade stacking quarter of wave constituted of alternated
materials with high and low refractive indices, permit-
ting to reach reflectivity rates of 99.99%. Generally, filters,
which are considered as interferential photonic filters, are
composed of several cavities in order to get some trans-
mission strips with the stepper sides.

4 Results and discussion

Notice that, in the following numerical simulation, we
chose SiO2 (L) and TiO2 (H) as two elementary layers,
with refractive index nL = 1.45 and nH = 2.3 at 700 nm,
respectively. We assume that the optical indices of the
dielectric layers are constant versus the wavelength for
the visible domain (0.4–0.8) µm. The optical thicknesses
of the two components (L) and (H) are written in the
form nHdH = nBdB = λ0

4 , dH and dL are the physical
thicknesses for the high index material (TiO2) and for the
low index material (SiO2) respectively. The central wave-
length λ0 was chosen as 0.5 µm. These conditions imply
the phase ϕ = π

2
λ0
λ .

4.1 Reflection properties of the (GCLM)

To evaluate the reflection spectra at a normal incidence,
we use the matrix method introduced by Abeles [14] in

application to the stratified multilayer structures to cal-
culate the different photometric properties.

Figure 3 shows the reflection properties for (a, b) =
(1, 1) and m an integer equal to 3, 4, 5 and 6. We note the
increase of the Bragg peak numbers with the increase of
the homothetic ratio m. The same result for (a,b)=(1,1)
is also observed for m a rational and irrational number
as shown in Figures 4 and 5. Figure 6 illustrates this be-
haviour and shows a linear variation of the Bragg peak
numbers with m particularly from m ≥ 3. The most im-
portant features of the represented spectra of the Fig-
ures 3, 4 and 5 are the following. First of all, the val-
ues of the reflection in the whole visible region are the
highest for m an integer and rational. The second feature
consists in the presence of many weaker band gaps in the
studied spectral domain. One of the most interesting phe-
nomena appearing in fractal materials is wave localization,
so that the field becomes spatially confined in some suit-
able regions [15]. This property makes fractal materials
very attractive from an optical point of view. The third
feature, the photonic band gap at 100% reflection exists
only for the integer values of m as shown in Figure 7.
Consequently, we restricted our study only for the integer
values of m. We fixed firstly a = 1 and made b vary from 1
to 4, secondly we fixed b = 1 and made a vary from 1 to 4.
We chose m = 6 so as to appreciate the effect of parame-
ters a and b. In Figures 8 and 9 we present the results of
the numerical analysis of the reflection. As a general trend
it can be seen that by increasing the low refractive index
layers L of the sequences, more and more photonic band
gaps at 100% reflection develop as shown in Figure 10
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Fig. 4. The reflection properties for (a, b) = (1, 1) and m a rational equal to (a):2.5, (b): 3.5, (c): 4.5 and (d): 5.5.

Fig. 5. The reflection properties for (a, b) = (1, 1) and m an irrational equal to (a):
√

2 + 1, (b):
√

3 + 1 and (c):
√

5 + 1.

Fig. 6. Plots of the Bragg peak numbers versus the homothetic
ratio m.

Fig. 7. Plots of the width photonic band gap at 100% reflection
versus the homothetic ratio m.
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Fig. 8. The reflection properties for m = 6 and (a, b) = (1, b) with b equal to (a): 1, (b): 2, (c): 3 and (d): 4.

Fig. 9. The reflection properties for m = 6 and (a, b) = (a, 1) with a equal to (a): 1, (b): 2, (c): 3 and (d): 4.
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Fig. 10. Plots of the width photonic band gap at 100% reflection and the Bragg peak numbers versus the integer b for m = 6
and the third iteration.

  

Fig. 11. Plots of the width photonic band gap at 100% reflection and the Bragg peak numbers versus the integer a for m = 6
and the third iteration.

which summarizes the results of the Figure 8. This result
is encouraging as regards the possible use of these effects
in optical devices since the Bragg peaks are accompanied
by the transmission dips. Therefore, these configurations
can be used as a perfect polychromatic filter when they
are sandwiched between the periodic stacks [13]. On the
contrary when the high refractive index layers H increase,
the number of Bragg peaks and the width of the pho-
tonic band gap at 100% reflection decrease as shown in
Figure 11, which summarizes the results of the Figure 9.
Finally, it is crucial to note, that the interesting results

are obtained particularly for m an integer and b higher
than a.

4.2 Transmissions properties
of the (PMS)J[GCLM)]P(PMS)J structures

4.2.1 The optimisation of the repetition number J
of the (PMS)

In order to optimize the value of the repetition num-
ber J of the periodic multilayer structures (PMS),
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Fig. 12. Transmission spectrum versus wavelength for the H(LH)J(HLH3LHLH)3H(LH)J structure for different J values.

we studied in the range 0.46–0.52 µm and at nor-
mal incidence the optical transmission of the system
H(LH)J (HLH3LHLH)P H(LH)J where H and L are the el-
ementary layers SiO2 (L) and TiO2 (H) with refractive
index nL = 1.45 and nH = 2.3 at 700 nm, respectively.
Then, we fixed P to 3 and let J vary from 0 to 8. Figure 12
presents the numerical simulation results for all the values
of J .

It is evident from Figure 12 that the most important
features of the represented transmission specters are the
following:

– Four transmission peaks are observed in the studied
spectral range for J ≥ 2.

– The minimal transmission Tmin%(0.5µm) at λ =
0.5 µm and the average full width at half maximum
(FWHM) ∆λ (µm) of the peaks decrease with J in-
creasing.

As we can see from Figures 13 and 14 which respectively
illustrate the behaviour of the Tmin%(0.5µm) and the
(FWHM) ∆λ (µm) versus the repetition number J , the
optimal value J which can be chosen for the study con-
figuration (PMS)J [GCLM]P (PMS)J is J ≥ 5. The value
J = 5 corresponds to the minimal periodical (LH) number
which can be traced to have minimal transmission 0.12%
and the FWHM (3.8 × 10−4 µm). Indeed, from J = 5
no considerable improvement in the performances of the
systems is observed compared with the cases J = 2, J = 3
and J = 4.

4.2.2 Numerical results of the study configurations:
H(LH)5[GCLM]PH(LH)5

Now we move on the discussion of the results of numerical
calculation of transmission spectra for the study configu-
ration SP : H(LH)5[GCLM]P H(LH)5.

 

 

Fig. 13. Plot of the minimal transmission at λg 0.5 µm ver-
sus repetition number J for the H(LH)J(HLH3LHLH)3H(LH)J

structure.

As we have seen in Section 4.2.1, the parameters a, b and
m respect the inequality: a + b < m.

To compare the performances of the studied struc-
tures, we follow the evolution of these parameters in each
structure:

• The number of the Bragg peaks.
• The minimal transmission between the peaks, which

should be the weakest.
• The maximal transmission of the peaks, which must

reach the 100%
• The average of full width at half maximum (FWHM)

of the peaks, which should be the sharpest.
• The peak positions.

According to the obtained results, we notice that when m
is even, the distributions of the peak positions versus the
repetition number p commonly is given by the Figure 15.
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Fig. 14. Plot of the average of the full width at half maximum
(FWHM) of the peaks versus the repetition number J of the
H(LH)J(HLH3LHLH)3H(LH)Jstructure.

Fig. 15. Plot of the peak positions versus repetition num-
ber P of the H(LH)5[H2LH]P H(LH)5 structure.

Fig. 16. Transmission spectrum versus
wavelength for the H(LH)5[H2LH]P H(LH)5

structure for different P values.
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Fig. 17. Transmission spectrum versus wavelength for the H(LH)5[2HLH]P H(LH)5 structure for different P values.

Note the presence of the peak at λ = λ0 = 0.5 µm for ev-
ery value of P . The best results which correspond to 100%
transmission of peaks are obtained only for symmetrical
structures (GCLM) of type aH bL aH with b = m − 2a.
For example Figure 16 illustrates the case which corre-
spond to m = 4, a = 1 then b = 2 and the (GCLM)
structure concerned is H2LH. In the case of the asymmet-
rical structures such as aH bL[m− (a + b)]H one notes in

general a decrease until zero of the transmission peaks at
λ = λ0 = 0.5 µm as it is shown by Figure 17 for m = 4,
a = 2 and b = 1. Besides, the other peak intensities keep
values between 60 and 80%.

For the case m an odd number, the distributions of the
peak positions versus the repetition number P is given by
Figure 18. Note the absence and the presence of the peak
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Fig. 18. Plot of the peak positions versus repetition number P
of the H(LH)5[H3LH]P H(LH)5structure.

at λ = λ0 = 0.5 µm. Indeed, if we use ON to represent
the maximal transmission and OFF the minimal one at
λ = λ0 = 0.5 µm, the coefficient transmission T through
the structures, has the following switch like properties (see
Fig. 19):

S0(ON)-S1(OFF)-S2(ON)-S3(OFF)-S4(ON)-S5(OFF)...

Note that we do not observe in this case a great difference
between geometrical and spectral properties, although we
show that the best performances are obtained for the sym-
metrical configurations. However, the odd values of m give
interesting results, in particular the switching phenomena
observed at λ = λ0 = 0.5 µm:

In order to check the predicted scaling of the trans-
mission spectra at λ = λ0, we use the antitrace map
method [16] to evaluate the transmission coefficients
through a considered structure. The trace-map technique,
first introduced in 1983 [17], has proven to be a power-
ful tool to investigate the properties of various aperiodic
systems. However, we must know the so-called “antitrace
map” when we evaluate the light transmission coefficients
through an aperiodic sequence [18]. Here the so-called “an-

titrace” of a 2 × 2 matrix A =
(

A11 A12

A21 A22

)
is defined as

yA = A21 − A12.
We use the antitrace map method to evaluate

the transmission coefficients at λ = λ0, through a
H(LH)5[H3LH]P H(LH)5, H(LH)5[2HLH]P H(LH)5 and
H(LH)5[H2LH]P H(LH)5 structures which have the fol-
lowing properties:

– For the structure H(LH)5(H3LH)P H(LH)5:

S0(ON) - S1(OFF)- S2(ON) - S3(OFF)- S4(ON) -
S5(OFF)...

– For the structure H(BH)5(2HLH)P H(BH)5:

S0(ON) - S1(ON)- S2(ON) - S3(ON)- S4(ON) - S5(ON)...

while the peak intensity decreases with P increases.

– For the structure Sp = H(LH)5(H2LH)P H(LH)5:

S0(ON) - S1(ON)- S2(ON) - S3(ON)- S4(ON) - S5(ON)...

We always have 100% transmission independently of
the value of P .
Each of the homogeneous layers is characterised by the
following matrix [14]:

Mi =
(

cosϕi
j
ni

sin ϕi

jni sin ϕi cosϕi

)

where Mi is the characteristic matrix of the ith layer and
ϕi = 2π

λ nidi, di is the thickness of the ith layer and ni

is the refractive index of the ith layer. The matrix Mi is
unimodular.

The characteristic matrix of the overall multilayer
system is given by:

Sp =
∏
i

Mi =
(

S11 S12

S21 S22

)
MApM , where M = matrix

product of H(LH)5 structure and AP = matrix product of
A1 = [H3LH], A2 = [2HLH] and A3 = [H2LH] structures.

Since Sp is unimodular transfer matrix, the transmis-
sion coefficient is given by [19]:

T =
4

|Sij |2 + 2
(1)

which can be expressed in the following form:

T =
4

x2
s + y2

s

(2)

where xs and ys denote the trace and antitrace of the
transfer matrix Sp, respectively.

From (2), we see that the transmission coefficient is
completely determined by the trace and antitrace. In
the following discussion we need to know the pth power
of unimodular 2×2 matrix A, which can be written as [20]:

Ap = Up(xA)A − Up−1(xA)I (3)

where I is the unit matrix and Up(xA) =
λp
+−λp

−
λ+−λ− , λ± =

xA±
√

x2
A−4

2 .
Here xA and λ± denote the trace and two eigen-values

of A, respectively. Using equation (3), we can write the
recursion relation of the transfer matrix Sp:

– For the Ap structure we have:{
xAS = Up(xA)xA − 2Up−1(xA)
yAS = Up(xA)yA.
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Fig. 19. Transmission spectrum versus wavelength for the H(LH)5[H3LH]P H(LH)5 structure for different P values.

– For the MAp M structure we have:{
xS = Up(xA)xMAM − Up−1(xA)xM2

yS = Up(xA)yMAM − Up−1(xA)yM2 .

For λ = λ0 we have: M2 =
(−1 0

0 −1

)
, MA1M =(

0 j
nH

e′9

−jnHe9 0

)
, MA2M =

(−e′ 0
0 −e

)
and MA3M =

(−1 0
0 −1

)
where e = nH/nL and e′ = nL/nH . The

results of the three structures H(LH)5[H3LH]P H(LH)5,
H(LH)5[2HLH]P H(LH)5and H(LH)5[H2LH]P H(LH)5are
summarised in Tables 1, 2 and 3 respectively. For all the
structures we classify the results into two classes, the even
family with p = 2m and the odd family with p = 2m + 1.
For the even family, the transmission coefficients are 100%
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Table 1. Trace, antitrace and transmission coefficients for the H(LH)5(H3LH)P H(LH)5 structures.

p 0 1 2 3 4 5 6 7

Up(xA) 0 1 0 –1 0 1 0 –1

Up−1(xA) 1 0 1 0 –1 0 1 0

xS –2 0 2 0 –2 0 2 0

yS 0 –j.146.199 0 +j146.199 0 –j146.199 0 +j146.199

T (%) 100 1.87 × 10−2 100 1.87 × 10−2 100 1.87 × 10−2 100 1.87 × 10−2

Table 2. Trace, antitrace and transmission coefficients for the H-LH)5(2HLH)P H(LH)5 structures.

p 0 1 2 3 4 5 6 7

Up(xA) 0 1 2.2166 3.9135 6.4581 10.4020 16.5993 26.3927

Up−1(xA) –1 0 1 2.2166 3.9135 6.4581 10.4020 16.5993

xS –2 –2.2166 –2.913 –4.2415 –6.4885 –10.1415 –15.9907 –25.3047

yS 0 0 0 0 0 0 0 0

T (%) 100 81.40 47.12 22.23 9.50 3.88 1.56 0.62

Table 3. Trace, antitrace and transmission coefficients for the H(LH)5(H2LH)P H-LH)5 structures.

p 0 1 2 3 4 5 6 7

Up(xA) 0 1 2 3 4 5 6 7

Up−1(xA) –1 0 1 2 3 4 5 6

xS –2 –2 –2 –2 –2 –2 –2 –2

yS 0 0 0 0 0 0 0 0

T (%) 100 100 100 100 100 100 100 100

for the MAp
1M structure and the MAp

3M one, and de-
crease from 100% to 0 for the MAp

2M structure. For the
odd family, the transmission coefficients are 1.87× 10−2%
and 100%, respectively for MAp

1M and MAp
3M struc-

tures, and decrease from 81.40% to 0 for the MAp
2M struc-

ture.. These results confirm very well the numerical cal-
culations which are shown in Figures 6, 7 and 9.

5 Conclusion

Generalized Cantor systems can supply an interesting al-
ternative to regular photonic crystals for the realization of
photonic devices like dielectric mirror. Another interest-
ing future application of these materials could be realized
in the field of sensitive optical filters, where the resonance
peaks observed in the reflection spectra could serve as the
bases of the polychromatic filter device. One shows that
more the one-dimensional generalized multilayer Cantor
structures contain low refractive indices layers L, more
the number of Bragg peaks increases. The latter are char-

acterized by values adjoining the 100% reflection and are
separated by transmission peaks with very weak values.

Multiple resonance peaks in the visible range are ob-
served in the spectral visible range when a generalized
Cantor multilayer is inserted between two highly reflective
mirrors. The number of peaks is dependent on the repeti-
tion number P of the generalized Cantor like-multilayer.
The transmission peaks can be made very sharp by in-
creasing the reflectivity of the mirror and the repetition
number P . The best performances are obtained only for
the symmetrical configurations of the generalized Can-
tor multilayer and in particular for P an odd number.
In any cases, the average of the full width at half maxi-
mum (FWHM) for each of the resonance peaks can be as
narrow as possible with increasing P .

Finally, it is useful to note that all the results ob-
tained are applicable not only to the generalized Cantor-
like multilayer but probably for other quasi periodic sys-
tems such as (generalized Fibonacci sequences, generalized
Thue-Morse sequences, ...) which constitute a perspective
of this work.
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